UML: Unified Modeling Language

Modeling

+ Describing a system at a high level of
abstraction
- A model of the system
- Used for requirements and specification

* Many notations over time
- State machines
- Entity-relationship diagrams
- Dataflow diagrams

Recent History: 1980's

* The rise of object-oriented programming

* New class of OO modeling languages

+ By early '90's, over fifty OO modeling
languages

Recent History: 1990's

* Three leading OO notations decide to combine
- Grady Booch (BOOCH)
- Jim Rumbaugh (OMT: Object Modeling Technique)
- Ivar Jacobsen (OOSE: OO Soft. Eng)

* Why?
- Natural evolution towards each other
- Effort to set an industry standard

UML

- UML stands for
Unified Modeling Language

- Design by committee
- Many interest groups participating
- Everyone wants their favorite approach to be "in"

UML

- UML stands for
Unified Modeling Language

- Design by committee
- Many interest groups participating
- Everyone wants their favorite approach to be "in"

UML (Cont.)

* Resulting design is huge
- Many features
- Many loosely unrelated styles under one roof

+ Could also be called
Union of all Modeling Languages

Objectives of UML

- UML is a general purpose notation that is used
To
» visualize
+ specify
- construct and
- document
the artifacts of a software system

This and Next Lectures

- We discuss
- Use Case Diagrams for functional models
- Class Diagrams for structural models
- Object Diagrams

- Sequence Diagrams |

- Activity Diagrams for dynamic models

- State Diagrams

* This is a subset of UML
- But probably the most used subset

Development Process

* Requirements elicitation - High level capture of user/
system requirements

- Use Case Diagram
+ Identify major objects and relationships
- Object and class diagrams
» Create scenarios of usage
- Class, Sequence and Collaboration diagrams
* Generalize scenarios to describe behavior
- Class, State and Activity Diagrams
* Refine and add implementation details
- Component and Deployment Diagrams >

Structural Diagrams

+ Class Diagram - set of classes and their relationships.

Describes interface to the class (set of operations
describing services)

+ Object Diagram - set of objects (class instances) and
their relationships

+ Component Diagram - logical groupings of elements
and their relationships

* Deployment Diagram - set of computational
resources (hodes) that host each component

10

Behavioral Diagram

+ Use Case Diagram - high-level behaviors of the
system, user goals, external entities: actors

+ Sequence Diagram - focus on time ordering of
messages

+ Collaboration Diagram - focus on structural
organization of objects and messages

-+ State (Machine) Diagram - event driven state
changes of system

+ Activity Diagram - flow of control between activities

11

Use Case Diagram

+ Elements
- Actors
- Use cases
- Relations

- Use case diagram
shows relationship
between actors and
use cases

actor

actor

12

Use Case Diagram Example

passenger

<<uses>>

technician

Business
Class Ride

Economy
Class Ride

13

Example:
Project and Resource Management System

- A resource manager manages resources

- A project manager manages projects

+ A system administrator is responsible for
administrative functions of the system

* A backup system houses backup data for the
system

14

X

Project and Resource Management System
(P&RMS)

Manage

Resource
Manager

<<actor>>
Backup

Resources

Manage

X

Projects

Administer

System

Project
Manager

X

System
Administrator

Figure 4-1: High-Level Use Case Diagram

Do these Use Cases Pass the Tests?

+ Boss test?
- EBP test?
« Size test?

16

Manage Project Use Case

* A project manager can add, remove, and
update a project

* Remove and update project requires to find

project
* A project update may involve
- Add, remove, or update activity

- Add, remove, or update task

- Assign resource to a task or unassign resource
from a task

17

<<USES>>

Project
<<Uses>> Update Manager
A Pojed J
5 A A
<<extends>> <<extends>>

Add Add
Activity Task
<<extends>> <<extends>>

Remove Remove
Activity Task

<<extends>> |/ <<extends>> <<extends>> \ <<extends>>

Update R Assign Unassign Update
Adtvity esource to Resource from Task
Tosk Task

Figure 4-3: Manage Projects Use Case Diagram

18

Class Diagrams

Describe classes
- In the OO sense

Class diagrams are
static -- they display
what interacts but not
what happens when they
do interact

Each box is a class
- List fields
- List methods

Train

lastStop
nextStop
velocity

doorsOpen?

addStop(stop);

startTrain(velocity);

stopTrain();
openDoors();

closeDoors();

19

Class Diagrams: Relationships

* Many different kinds of
edges to show different
relationships between
classes

* Any examples?

20

Relationships in UML

Relationship Function Notation
association A description of a connection among
instances of classes
dependency A relationship between two model elements
-————
generalization A relationship between a more specific and .
a more general description, used for inher- | ——1>>
itance and polymorphic type declarations
realization Relationship between a specification and its
implementation Sl P
usage A situation in which one element requires kind»

another for its correct functioning

21

Association

Association between two
classes

- if an instance of one class
must know about the
other in order to perform
its work.

Label endpoints of edge

with cardinalities

- Use * for arbitrary

Can be directional (use
arrows in that case)

Customer

1

Order

22

Association

association name

Priority
next | .1 <— reflexive association
bscrioti 0..1
Subscription previous
rolename > source 0.1 < multiplicity

<— binary association

tickets %

Reservation | participating class

Examples of Association

person

Works For »

company

person

-employee

-employer

company

1..*

*

24

Link Attributes

Associations may have properties in the same manner
as objects/classes

Salary and job title can be represented as

-salary
-title
person 1.7 ! * company
-employee -employer

25

Association

participating class

L. donor
Organization Person

! association class (all one element)
DonationLevel

yearAmount: Money o .
lifeAmount: Money —~ [— association attributes

26

Types of Association

Aggregation Composition

Subscription

b

*x

Performance

aggregate

parts

parts

composite Order

1?1

1

b S

Customerlinfo

Lineltem

27

Aggregation Composition

An association in which - An association in which

one class belongs to a one class belongs to a
collection collection
- Shared: An object can - No Sharing: An object
exist in more than one cannot exist in more than
collections one collections
- No ownership implied - Strong “has a"
relationship

* Denoted by hollow

diamond on the |
“contains” side - Denoted by filled

diamond on the
"contains” side

- Ownership

28

‘Car"

4

Wheels

‘ Project ‘
1

1.*

Consultant

29

Composition Aggregation
Car ‘ Project \

4 1.*
Wheels Consultant

30

| ¢s435 |

McGlothlin

Student

1

1.*

classroom

31

Aggregation

Composition

‘ CS435 \

Student

Millington
¥

1

1.*

Classroom

32

Generalization

- Inheritance between
classes Button

Denoted by open
triangle

RequestButton ‘ ‘ EmergencyButton

33

Generalization

subclasses

Shape

Polygon

/\

superclass

Ellipse

Spline

generalizations

unseen
subclasses

34

Generalization

abstract class

> Order

concrete class

date: Date

confirm()

\

MailOrder

dateFilled: Date

confirm()

superclass (parent)

abstract operation

generalization

BoxOfficeOrder

hold: Boolean

confirm()

subclass (child)

35

Generalization

* (Think subclassing)

DAocTor

L

AN

‘ Hospital

Doctor ‘

L

AN

‘ Cardiologist ‘

General
Practitioner

36

Generalization

Reservation

TimeStampedTransaction
targetDate: Date

number: Integer received: Time

confirm() stamp!()

\Z parent parent

child

TimeStampedReservation
This class inherits the attributes

and operations of both of
its parents.

No new features are needed by the child.

37

Generalization

«An is-a relationship
«Abstract class

38

Realization

«interface»
ChoiceBlock

setDefault(choice: Choice)
getChoice(): Choice

realization PopUpMenu
<+ — — — — — — — 7| setDefault (choice: Button)
specifier ~ Implementation | gatChojce(): Button
NA RadioButtonArray

~

1..% choices

Choice

~ | setDefault (choice: Button)
getChoice(): Button

1..% choices

Button

String

1..% | choices

39

Dependency

We use term dependencies for other relationships that
do not fit sharper categories

I ClassD
ClassA = ClassB
ass «friend» ass ~
, - -
/T\ driencs = operationZ()

«instantiate» dependency from
| an operation to a class

|

L — «ab | ClassC

40

Dependency Function Keyword

access A private import of the contents of another | access
package

binding Assignment of values to the parameters ofa | bind
template to generate a new model element

call Statement that a method of one class calls call
an operation of another class

creation Statement that one class creates instances of | create
another class

derivation Statement that one instance can be com- derive
puted from another instance

instantiation Statement that a method of one class creates | instantiate
instances of another class

permission Permission for an element to use the con- permit
tents of another element

realization Mapping between a specification and an realize

implementation of it

instantiation Statement that a method of one class creates | instantiate
instances of another class

permission Permission for an element to use the con- permit
tents of another element

realization Mapping between a specification and an realize
implementation of it

refinement Statement that a mapping exists between refine
elements at two different semantic levels

send Relationship between the sender of a signal | send
and the receiver of the signal

substitution Statement that the source class supports the | substitute
interfaces and contracts of the target class
and may be substituted for it

trace dependency | Statement that some connection exists trace
between elements in different models, but
less precise than a mapping
Statement that one element requires the use

usage

presence of another element for its correct
functioning (includes call, creation, instan-
tiation, send, and potentially others)

Example class diagram?

window
-name : string(idl) event

+open() @ [T 7
+close()
+display()

- " control
consolewindow dialogbox

43

Which Relation is Right?

- Aggregation — aka is-part-of, is-made-of, contains

« Use association when specific (persistent) objects have
multiple relationships (e.g., there was only one Bill Gates
at MS and Steve Jobs at Apple)

« Use dependency when working with static objects, or if
there is only one instance

« Do not confuse part-of with is-a

44

Relationships in UML

Relationship Function Notation
association A description of a connection among
instances of classes
dependency A relationship between two model elements
-————
generalization A relationship between a more specific and .
a more general description, used for inher- | ——1>>
itance and polymorphic type declarations
realization Relationship between a specification and its
implementation Sl P
usage A situation in which one element requires kind»

another for its correct functioning

45

Project

)

Adtivity

|
1.7

Tosk . Assigned To »

Resource

Figure 4-5: High-Level Project Class Diagram

46

Project

- Names : String
- Desc : String
- StartDate : Date

+ create () : Projedt
+ setName (Nome : String)

+ getNome () : String

+ setDesc (Desc : String)

+ getDesc () : String

+ sefStartDate (StortDate : Date)
+ 3eISIutDnIe (): Date

+ destroy ()

l *

Adtivity

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Infeger

- Deliverable : String

+ setNumber (Number : Integer)
+ getNumber () : Integer

+ setDesc (Desc : String)

+ getDesc () : String

+ sefStartDate (StartDate : Date)
+ getStartDate () : Date

+ setHours (Hour : Integer)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String

+ destroy ()

Resource

]
A Assigned To

Tosk

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Integer

4

- Resourceld : Integer

< +.reate () Tosk
- | + setNumber (Number : Infeger)

+ getNumber () : Infeger

+ setDesc (Desc : String)

+ getDesc () : String

+ setStartDate (StartDate : Date)
+ getStartDate () : Date

+ setHours (Hour : Integer)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String

+ setResourceld (Resld : Integer)
+ ﬂetResour(eld () : Integer

+ destroy ()

Figure 4-7: Detailed Project Class Diagram

47

Work Effort

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Integer

+ create () : Work Effort

+ setNumber (Number : Integer)
+ getNumber () : Integer

+ setDesc (Desc : String)

+ getDesc () : String

+ setStartDate (StartDate : Date)
+ getStartDote () : Date

+ setHours (Hours : Infeger)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String
+ destroy ()

+ destroy ()
Adtivity Tosk
- Deliverable : String - - Resourceld : Integer
+ create () : Activity i 1. *| +reate () : Tosk

+ setResourceld (Resld : Integer)
+ getResourceld () : Integer
+ destroy ()

Figure 4-8: Detailed Activities and Tasks Class Diagram

48

Object Diagram

+ Object diagram is an instantiation of a class
diagram

* Represents a static structure of a system at a
particular time

49

Human Resource System Development
: Project
— = Nome = "Human Resource Sys. Dev.’
Desc = "This is our project’
StartDote = Jon 5, 1998
Scope : Activity
Number = 1
Desc = 'Scope project’
StartDate = Jan 5, 1998
Hours = 80
Deliverable = "Scope Document’
Review : Task Scope : Task
Number = 1 Number = 2
Desc = 'Review existing system’ Desc = "Scope new system'
StartDate = Jan 5, 1998 StartDate = Jan 19, 1998
Hours = 40 Hours = 40
Resourceld = 2 Resourceld = 1
AnalysisDesign : Activity
Number = 2
Desc = "Analysis and Design’
StartDate = Feb 2, 1998
Hours = 80
Deliverable = *Anal/Des Doc’
Analysis : Task Design : Task
Number = 1 Number = 2
Desc = 'Analyze requirements’ Desc = 'Design solution’
StartDate = Feb 2, 1998 StortDate = Feb 16, 1998
Hours = 40 Hours = 40
Resourceld = 2 Resourceld = 3
Implementation : Activi
Number = 3
Desc = “Implementation’ I ——
StartDate = Morch 2, 1998
Hours = 100
Deliverable = "System'
[I
Code : Task Test : Task Deploy : Task
Number =1 Number = 2 Number = 3
Desc = 'Code solution’ Desc = "Test solution’ Desc = 'Deploy solution’
StartDote = March 2, 1998 StartDate = March 16, 1998 StartDate = March 30, 1998
Hours = 40 Hours = 40 Hours = 20
Resourceld = 2 Resourceld = 3 Resourceld = 3

Figure 4-11: Project Object Diagram

50

Sequence Diagrams

» Sequence diagrams

- Refine use cases
- Gives view of dynamic behavior of classes

» Class diagrams give the static class structure

* Not orthogonal to other diagrams
- Overlapping functionality
- True of all UML diagrams

52

Development Process

* Requirements elicitation - High level capture of user/
system requirements

- Use Case Diagram
+ Identify major objects and relationships
- Object and class diagrams
» Create scenarios of usage
- Class, Sequence and Collaboration diagrams
* Generalize scenarios to describe behavior
- Class, State and Activity Diagrams
* Refine and add implementation details
- Component and Deployment Diagrams >

UML Driven Process

\M/

Diagram

Use Case

7 TN N
Object Diagram S_eqm Class Diagram State Chart
Diagram =

Collaboration

Diagram

Deployment
Diagram

Activity
Diagram

54

Requirements
Elicitation

—— > el UML Driven
Process Model

Object Diagram
7

= 7/\ Sequence
/ Diagrams
/

/

=~ /\ S State Chart
Diagrams

Validate

Work Products

« Functional Model — Use Case diagrams

« Analysis Object Model — simple object/class diagram
« Dynamic Model — State and Sequence diagrams

e Object Design Model — Class diagrams

« Implementation Model — Deployment, and Activity
diagrams

56

Acknowledgements

* Many slides courtesy of Rupak Majumdar

57

