UML: Unified Modeling Language




Modeling

+ Describing a system at a high level of
abstraction
- A model of the system
- Used for requirements and specification

* Many notations over time
- State machines
- Entity-relationship diagrams
- Dataflow diagrams




Recent History: 1980's

* The rise of object-oriented programming

* New class of OO modeling languages

+ By early '90's, over fifty OO modeling
languages




Recent History: 1990's

* Three leading OO notations decide to combine
- Grady Booch (BOOCH)
- Jim Rumbaugh (OMT: Object Modeling Technique)
- Ivar Jacobsen (OOSE: OO Soft. Eng)

* Why?
- Natural evolution towards each other
- Effort to set an industry standard




UML

- UML stands for
Unified Modeling Language

- Design by committee
- Many interest groups participating
- Everyone wants their favorite approach to be "in"
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UML (Cont.)

* Resulting design is huge
- Many features
- Many loosely unrelated styles under one roof

+ Could also be called
Union of all Modeling Languages




Objectives of UML

- UML is a general purpose notation that is used
To
» visualize
+ specify
- construct and
- document
the artifacts of a software system




This and Next Lectures

- We discuss
- Use Case Diagrams for functional models
- Class Diagrams for structural models
- Object Diagrams

- Sequence Diagrams |

- Activity Diagrams for dynamic models

- State Diagrams

* This is a subset of UML
- But probably the most used subset




Development Process

* Requirements elicitation - High level capture of user/
system requirements

- Use Case Diagram
+ Identify major objects and relationships
- Object and class diagrams
» Create scenarios of usage
- Class, Sequence and Collaboration diagrams
* Generalize scenarios to describe behavior
- Class, State and Activity Diagrams
* Refine and add implementation details
- Component and Deployment Diagrams >




Structural Diagrams

+ Class Diagram - set of classes and their relationships.

Describes interface to the class (set of operations
describing services)

+ Object Diagram - set of objects (class instances) and
their relationships

+ Component Diagram - logical groupings of elements
and their relationships

* Deployment Diagram - set of computational
resources (hodes) that host each component
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Behavioral Diagram

+ Use Case Diagram - high-level behaviors of the
system, user goals, external entities: actors

+ Sequence Diagram - focus on time ordering of
messages

+ Collaboration Diagram - focus on structural
organization of objects and messages

-+ State (Machine) Diagram - event driven state
changes of system

+ Activity Diagram - flow of control between activities
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Use Case Diagram

+ Elements
- Actors
- Use cases
- Relations

- Use case diagram
shows relationship
between actors and
use cases

actor

actor
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Use Case Diagram Example

passenger

<<uses>>

technician

Business
Class Ride

Economy
Class Ride
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Example:
Project and Resource Management System

- A resource manager manages resources

- A project manager manages projects

+ A system administrator is responsible for
administrative functions of the system

* A backup system houses backup data for the
system
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X

Project and Resource Management System
(P&RMS)

Manage

Resource
Manager

<<actor>>
Backup

Resources

Manage

X

Projects

Administer

System

Project
Manager

X

System
Administrator

Figure 4-1: High-Level Use Case Diagram




Do these Use Cases Pass the Tests?

+ Boss test?
- EBP test?
« Size test?
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Manage Project Use Case

* A project manager can add, remove, and
update a project

* Remove and update project requires to find

project
* A project update may involve
- Add, remove, or update activity

- Add, remove, or update task

- Assign resource to a task or unassign resource
from a task
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<<USES>>

Project
<<Uses>> Update Manager
A Pojed  J
5 A A
<<extends>> <<extends>>

Add Add
Activity Task
<<extends>> <<extends>>

Remove Remove
Activity Task

<<extends>> |/ <<extends>> <<extends>> \ <<extends>>

Update R Assign Unassign Update
Adtvity esource to Resource from Task
Tosk Task

Figure 4-3: Manage Projects Use Case Diagram
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Class Diagrams

Describe classes
- In the OO sense

Class diagrams are
static -- they display
what interacts but not
what happens when they
do interact

Each box is a class
- List fields
- List methods

Train

lastStop
nextStop
velocity

doorsOpen?

addStop(stop);

startTrain(velocity);

stopTrain();
openDoors();

closeDoors();
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Class Diagrams: Relationships

* Many different kinds of
edges to show different
relationships between
classes

* Any examples?
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Relationships in UML

Relationship Function Notation
association A description of a connection among
instances of classes
dependency A relationship between two model elements
-————
generalization A relationship between a more specific and .
a more general description, used for inher- | ——1>>
itance and polymorphic type declarations
realization Relationship between a specification and its
implementation Sl P
usage A situation in which one element requires kind»

another for its correct functioning
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Association

Association between two
classes

- if an instance of one class
must know about the
other in order to perform
its work.

Label endpoints of edge

with cardinalities

- Use * for arbitrary

Can be directional (use
arrows in that case)

Customer

1

Order
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Association

association name

Priority
next | .1 <— reflexive association
bscrioti 0..1
Subscription previous
rolename > source 0.1 < multiplicity

<— binary association

tickets %

Reservation | participating class




Examples of Association

person

Works For »

company

person

-employee

-employer

company

1..*

*
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Link Attributes

Associations may have properties in the same manner
as objects/classes

Salary and job title can be represented as

-salary
-title
person 1.7 ! * company
-employee -employer
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Association

participating class

L. donor
Organization Person

! association class (all one element)
DonationLevel

yearAmount: Money o .
lifeAmount: Money —~ [ — association attributes
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Types of Association

Aggregation Composition

Subscription

b

*x

Performance

aggregate

parts

parts

composite Order

1?1

1

b S

Customerlinfo

Lineltem
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Aggregation Composition

An association in which - An association in which

one class belongs to a one class belongs to a
collection collection
- Shared: An object can - No Sharing: An object
exist in more than one cannot exist in more than
collections one collections
- No ownership implied - Strong “has a"
relationship

* Denoted by hollow

diamond on the |
“contains” side - Denoted by filled

diamond on the
"contains” side

- Ownership
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‘Car"

4

Wheels

‘ Project ‘
1

1.*

Consultant
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Composition Aggregation
Car ‘ Project \

4 1.*
Wheels Consultant
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| ¢s435 |

McGlothlin

Student

1

1.*

classroom
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Aggregation

Composition

‘ CS435 \

Student

Millington
¥

1

1.*

Classroom
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Generalization

- Inheritance between
classes Button

Denoted by open
triangle

RequestButton ‘ ‘ EmergencyButton
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Generalization

subclasses

Shape

Polygon

/\

superclass

Ellipse

Spline

generalizations

unseen
subclasses
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Generalization

abstract class

> Order

concrete class

date: Date

confirm()

\

MailOrder

dateFilled: Date

confirm()

superclass (parent)

abstract operation

generalization

BoxOfficeOrder

hold: Boolean

confirm()

subclass (child)
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Generalization

* (Think subclassing)

DAocTor

L

AN

‘ Hospital

Doctor ‘

L

AN

‘ Cardiologist ‘

General
Practitioner
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Generalization

Reservation

TimeStampedTransaction
targetDate: Date

number: Integer received: Time

confirm() stamp!()

\Z parent parent

child

TimeStampedReservation
This class inherits the attributes

and operations of both of
its parents.

No new features are needed by the child.
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Generalization

«An is-a relationship
«Abstract class
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Realization

«interface»
ChoiceBlock

setDefault(choice: Choice)
getChoice(): Choice

realization PopUpMenu
<+ — — — — — — — 7| setDefault (choice: Button)
specifier ~ Implementation | gatChojce(): Button
NA RadioButtonArray

~

1..% choices

Choice

~ | setDefault (choice: Button)
getChoice(): Button

1..% choices

Button

String

1..% | choices
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Dependency

We use term dependencies for other relationships that
do not fit sharper categories

I ClassD
ClassA = ClassB
ass «friend» ass ~
, - -
/T\ driencs = operationZ()

«instantiate» dependency from
| an operation to a class

|

L — «ab | ClassC
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Dependency Function Keyword

access A private import of the contents of another | access
package

binding Assignment of values to the parameters ofa | bind
template to generate a new model element

call Statement that a method of one class calls call
an operation of another class

creation Statement that one class creates instances of | create
another class

derivation Statement that one instance can be com- derive
puted from another instance

instantiation Statement that a method of one class creates | instantiate
instances of another class

permission Permission for an element to use the con- permit
tents of another element

realization Mapping between a specification and an realize

implementation of it




instantiation Statement that a method of one class creates | instantiate
instances of another class

permission Permission for an element to use the con- permit
tents of another element

realization Mapping between a specification and an realize
implementation of it

refinement Statement that a mapping exists between refine
elements at two different semantic levels

send Relationship between the sender of a signal | send
and the receiver of the signal

substitution Statement that the source class supports the | substitute
interfaces and contracts of the target class
and may be substituted for it

trace dependency | Statement that some connection exists trace
between elements in different models, but
less precise than a mapping
Statement that one element requires the use

usage

presence of another element for its correct
functioning (includes call, creation, instan-
tiation, send, and potentially others)




Example class diagram?

window
-name : string(idl) event

+open() @ [T 7
+close()
+display()

- " control
consolewindow dialogbox
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Which Relation is Right?

- Aggregation — aka is-part-of, is-made-of, contains

« Use association when specific (persistent) objects have
multiple relationships (e.g., there was only one Bill Gates
at MS and Steve Jobs at Apple)

« Use dependency when working with static objects, or if
there is only one instance

« Do not confuse part-of with is-a
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Relationships in UML

Relationship Function Notation
association A description of a connection among
instances of classes
dependency A relationship between two model elements
-————
generalization A relationship between a more specific and .
a more general description, used for inher- | ——1>>
itance and polymorphic type declarations
realization Relationship between a specification and its
implementation Sl P
usage A situation in which one element requires kind»

another for its correct functioning
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Project

)

Adtivity

|
1.7

Tosk . Assigned To »

Resource

Figure 4-5: High-Level Project Class Diagram
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Project

- Names : String
- Desc : String
- StartDate : Date

+ create () : Projedt
+ setName (Nome : String)

+ getNome () : String

+ setDesc (Desc : String)

+ getDesc () : String

+ sefStartDate (StortDate : Date)
+ 3eISIutDnIe (): Date

+ destroy ()

l *

Adtivity

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Infeger

- Deliverable : String

+ setNumber (Number : Integer)
+ getNumber () : Integer

+ setDesc (Desc : String)

+ getDesc () : String

+ sefStartDate (StartDate : Date)
+ getStartDate () : Date

+ setHours (Hour : Integer)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String

+ destroy ()

Resource

]
A Assigned To

Tosk

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Integer

4

- Resourceld : Integer

< +.reate () Tosk
- | + setNumber (Number : Infeger)

+ getNumber () : Infeger

+ setDesc (Desc : String)

+ getDesc () : String

+ setStartDate (StartDate : Date)
+ getStartDate () : Date

+ setHours (Hour : Integer)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String

+ setResourceld (Resld : Integer)
+ ﬂetResour(eld () : Integer

+ destroy ()

Figure 4-7: Detailed Project Class Diagram
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Work Effort

- Number : Integer
- Desc : String

- StartDate : Date
- Hours : Integer

+ create () : Work Effort

+ setNumber (Number : Integer)
+ getNumber () : Integer

+ setDesc (Desc : String)

+ getDesc () : String

+ setStartDate (StartDate : Date)
+ getStartDote () : Date

+ setHours (Hours : Infeger)

+ getHours () : Integer

+ setDeliverable (Delv : String)
+ getDeliverable () : String
+ destroy ()

+ destroy ()
Adtivity Tosk
- Deliverable : String - - Resourceld : Integer
+ create () : Activity i 1. *| +reate () : Tosk

+ setResourceld (Resld : Integer)
+ getResourceld () : Integer
+ destroy ()

Figure 4-8: Detailed Activities and Tasks Class Diagram
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Object Diagram

+ Object diagram is an instantiation of a class
diagram

* Represents a static structure of a system at a
particular time
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Human Resource System Development
: Project
— = Nome = "Human Resource Sys. Dev.’
Desc = "This is our project’
StartDote = Jon 5, 1998
Scope : Activity
Number = 1
Desc = 'Scope project’
StartDate = Jan 5, 1998
Hours = 80
Deliverable = "Scope Document’
Review : Task Scope : Task
Number = 1 Number = 2
Desc = 'Review existing system’ Desc = "Scope new system'
StartDate = Jan 5, 1998 StartDate = Jan 19, 1998
Hours = 40 Hours = 40
Resourceld = 2 Resourceld = 1
AnalysisDesign : Activity
Number = 2
Desc = "Analysis and Design’
StartDate = Feb 2, 1998
Hours = 80
Deliverable = *Anal/Des Doc’
Analysis : Task Design : Task
Number = 1 Number = 2
Desc = 'Analyze requirements’ Desc = 'Design solution’
StartDate = Feb 2, 1998 StortDate = Feb 16, 1998
Hours = 40 Hours = 40
Resourceld = 2 Resourceld = 3
Implementation : Activi
Number = 3
Desc = “Implementation’ I ——
StartDate = Morch 2, 1998
Hours = 100
Deliverable = "System'
[ I
Code : Task Test : Task Deploy : Task
Number =1 Number = 2 Number = 3
Desc = 'Code solution’ Desc = "Test solution’ Desc = 'Deploy solution’
StartDote = March 2, 1998 StartDate = March 16, 1998 StartDate = March 30, 1998
Hours = 40 Hours = 40 Hours = 20
Resourceld = 2 Resourceld = 3 Resourceld = 3

Figure 4-11: Project Object Diagram
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Sequence Diagrams

» Sequence diagrams

- Refine use cases
- Gives view of dynamic behavior of classes

» Class diagrams give the static class structure

* Not orthogonal to other diagrams
- Overlapping functionality
- True of all UML diagrams
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Development Process

* Requirements elicitation - High level capture of user/
system requirements

- Use Case Diagram
+ Identify major objects and relationships
- Object and class diagrams
» Create scenarios of usage
- Class, Sequence and Collaboration diagrams
* Generalize scenarios to describe behavior
- Class, State and Activity Diagrams
* Refine and add implementation details
- Component and Deployment Diagrams >




UML Driven Process

\M/

Diagram

Use Case

7 TN N
Object Diagram S_eqm Class Diagram State Chart
Diagram =

Collaboration

Diagram

Deployment
Diagram

Activity
Diagram

54




Requirements
Elicitation

—— > el UML Driven
Process Model

Object Diagram
7

= 7/\ Sequence
/ Diagrams
/

/

=~ /\ S State Chart
Diagrams

Validate




Work Products

« Functional Model — Use Case diagrams

« Analysis Object Model — simple object/class diagram
« Dynamic Model — State and Sequence diagrams

e Object Design Model — Class diagrams

« Implementation Model — Deployment, and Activity
diagrams
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